Resolve exercício sobre fatorial 3x2 com interação significativa no proc iml do SAS.
(1) Matrizes inversas generalizadas, sistemas inconsistentes, projeção ortogonal. (2) Modelo linear de Gauss-Markov: modelo de regressão linear múltipla; modelos superparametrizados de posto incompleto, de médias de caselas, com restrições paramétricas e modelos equivalentes. (3) Estimabilidade e estimação por ponto. "BLUE" de funções estimáveis. Teorema de Gauss-Markov. Regras práticas de estimabilidade. (4) Análise de variância e somas de quadrados. Projeção e decomposição ortogonal, contrastes ortogonais, notação R(.). Esperança matemática, distribuição e independência das formas quadráticas de interesse. (5) Estimação por intervalo e por região. (6) Testes de hipóteses: somas de quadrados de hipóteses, hipóteses equivalentes, teste da razão de verossimilhança e outros critérios. (7) Restrições nos parâmetros e restrições nas soluções. Reparametrizações e modelos equivalentes. (8) Modelo linear generalizado de Gauss-Markov: mínimos quadrados ponderados e generalizados, estimação e testes. (9) Experimentos desbalanceados e com caselas vazias. Interpretação de hipóteses.
Os objetivos da disciplina são: (1) Interpretar e resolver problemas envolvendo o modelo linear de Gauss-Markov em suas diversas caracterizações. (2) Identificar funções estimáveis e construir estimativas por ponto, por intervalo e por região. (3) Realizar análises de variância e interpretar conceitos sobre projeção ortogonal e decomposição ortogonal de somas de quadrados. (4) Discutir as formas quadráticas de interesse e identificar hipóteses na presença de desbalanceamento com ou sem caselas vazias. (5) Utilizar recursos computacionais.